BIOINFORMATICS FOR NERVOUS SYSTEM


Image

Research into the development, function and pathologies of the nervous system deserves the best bioinformatics support.


Whether you are tracking the development of the brain in mice, studying a neuropathology with iPSC-derived neurons or characterizing the microenvironment of CNS tumors, we ensure you get the most out of your ‘omics data.
Our expertise is particularly strong in studying the tumors of the nervous system as well as the molecular biology of neurodegenerative pathologies.



Omics data analysis in CNS research

How does the nervous system develop and maintain itself? How does it not maintain itself, and degenerate? What genes, proteins and pathways can be targeted to treat the CNS diseases?

The full arsenal of modern 'omics measurements is used to answer such questions in neurobiology, neurology and neuro-oncology.

The analysis of DNA-sequencing and SNP arrays enable studying the genetic predisposition to CNS pathologies. Read more about our services and references in genetics. We also analyze whole-genome, exome and gene panel sequencing data to study somatic mutations in the CNS tumors; see cancer research.

RNA-sequencing, proteomic and epigenomic measurements allow

  • identifying cellular identities through the development of the nervous system (single-cell approaches in particular),
  • discovering the mechanisms in which diseases arise and progress (examples from multiple CNS pathologies in the paper list below), and
  • studying the mechanisms of action or drugs

GIF

LEARN MORE






Selected publications from our customers


  1. Mezheyeuski, A. et al. (2023). An immune score reflecting pro- and anti-tumoural balance of tumour microenvironment has major prognostic impact and predicts immunotherapy response in solid cancers. EBioMedicine, 88, 104452. Advance online publication
    Click Here

  2. Tusup, M. et al. (2022). Epitranscriptomics modifier * indirectly triggers Toll-like receptor 3 and can enhance immune infiltration in tumors. Molecular therapy : the journal of the American Society of Gene Therapy, 30(3), 1163–1170.
    Click Here

  3. Cramer, M. et al. (2022). Transcriptomic Regulation of Macrophages by Matrix-Bound Nanovesicle-Associated Interleukin-33. Tissue engineering. Part A, 28(19-20), 867–878
    Click Here

  4. Ribeiro, R. et al. (2022). Synchronous Epidermodysplasia Verruciformis and Intraepithelial Lesion of the Vulva is Caused by Coinfection with α-HPV and β-HPV Genotypes and Facilitated by Mutations in Cell-Mediated Immunity Genes. Preprint at
    Click Here

  5. Wullt, B. et al. (2021). Immunomodulation-A Molecular Solution to Treating Patients with Severe Bladder Pain Syndrome?. European urology open science, 31, 49–58.
    Click Here

  6. Åvall-Jääskeläinen, S. et al. (2021). Genomic Analysis of Staphylococcus aureus Isolates Associated With Peracute Non-gangrenous or Gangrenous Mastitis and Comparison With Other Mastitis-Associated Staphylococcus aureus Isolates. Frontiers in microbiology, 12, 688819.
    Click Here

  7. Madonna, G. et al. (2021). Clinical Categorization Algorithm (CLICAL) and Machine Learning Approach (SRF-CLICAL) to Predict Clinical Benefit to Immunotherapy in Metastatic Melanoma Patients: Real-World Evidence from the Istituto Nazionale Tumori IRCCS Fondazione Pascale, Napoli, Italy. Cancers, 13(16), 4164.
    Click Here

  8. Gurvich, O. L. et al. (2020). Transcriptomics uncovers substantial variability associated with alterations in manufacturing processes of macrophage cell therapy products. Scientific reports, 10(1), 14049.
    Click Here

  9. Oksanen, M. et al. (2020). NF-E2-related factor 2 activation boosts antioxidant defenses and ameliorates inflammatory and amyloid properties in human Presenilin-1 mutated Alzheimer's disease astrocytes. Glia, 68(3), 589–599.
    Click Here